Molecular basis of species-specific expression of repolarizing K+ currents in the heart.

نویسندگان

  • Stephen Zicha
  • Isaac Moss
  • Bruce Allen
  • Andras Varro
  • Julius Papp
  • Robert Dumaine
  • Charles Antzelevich
  • Stanley Nattel
چکیده

There are important species-specific differences in K+ current profiles and arrhythmia susceptibility, but interspecies comparisons of K+ channel subunit expression are lacking. We quantified voltage-gated K+ channel (Kv) subunit mRNA and protein in rabbits, guinea pigs, and humans. Kv1.4, Kv4.2, and Kv4.3 mRNA was present in rabbits but undetectable in guinea pigs. MinK mRNA concentration in guinea pigs was almost threefold greater versus humans and 20-fold versus rabbits. MinK protein expression in guinea pigs was almost twofold that in humans and sixfold that in rabbits. KvLQT1 mRNA concentration was greatest in humans, and protein expression in humans was increased by approximately 2- and approximately 7-fold compared with values in rabbits and guinea pigs, respectively. The ether-a-go-go-related gene (ERG1) mRNA was more concentrated in humans, but ERG1 protein expression could not be compared across species because of epitope sequence differences. We conclude that important interspecies differences in cardiac K+ channel subunit expression exist and may contribute to the following: 1) lack of a transient outward current in the guinea pig (alpha-subunit transcription absent in the guinea pig heart); 2) small slow delayed rectifier current and torsades de pointes susceptibility in the rabbit (low-level minK expression); and 3) large slow component of the delayed rectifier current in the guinea pig (strong minK expression).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate dependence of the effect of antiarrhythmic drugs delaying cardiac repolarization: an overview.

Prolongation of the cardiac action potential and refractoriness (class III effect) is a potentially beneficial electrophysiological mechanism of action. However, this effect may be diminished or eliminated at rapid heart rates, so-called 'reverse rate dependence' of prolongation of repolarization. Action potential duration normally shortens as heart rate increases, due to increases in outward r...

متن کامل

Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium.

BACKGROUND The ventricular action potential exhibits regional heterogeneity in configuration and duration (APD). Across the left ventricular (LV) free wall, this is explained by differences in repolarizing K+ currents. However, the ionic basis of electrical nonuniformity in the right ventricle (RV) versus the LV is poorly investigated. We examined transient outward (ITO1), delayed (IKs and IKr)...

متن کامل

Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes.

The properties of the transient outward current (Ito) differ between rabbit and human atrial myocytes. In particular, rabbit Ito is known to recover more slowly than its human counterpart and to show much more frequency dependence. To assess the possibility that these physiological differences may reflect differing expression of K+ channel subunit gene products, we used a combination of whole-c...

متن کامل

Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model.

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+...

متن کامل

Pore mutants of HERG and KvLQT1 downregulate the reciprocal currents in stable cell lines.

We previously reported a transgenic rabbit model of long QT syndrome based on overexpression of pore mutants of repolarizing K(+) channels KvLQT1 (LQT1) and HERG (LQT2).The transgenes in these rabbits eliminated the slow and fast components of the delayed rectifier K(+) current (I(Ks) and I(Kr), respectively), as expected. Interestingly, the expressed pore mutants of HERG and KvLQT1 downregulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 285 4  شماره 

صفحات  -

تاریخ انتشار 2003